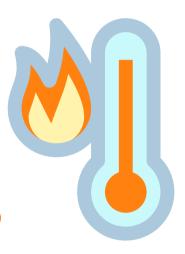


Hot Water Risk Assessments

Don't get burned by lack of knowledge

HSE Guidance States

"You should assess the potential scalding and burning risks" and a risk assessment of the premises should be carried out to identify what controls are necessary and how systems will be managed and maintained"



Let's unpick that...

Dutyholders, employers or premises owners have a duty of care under health and safety law to protect users of their water systems.

All systems require a risk assessment, however not all systems will require elaborate control measures.

A simple risk assessment may show that the risks are low and being properly managed to comply with the law.

What if it's not simple

Hospitals, GP Surgeries, healthcare and nursing home or other residential facilities will need to complete much more detailed risk assessments.

The main risks include

- Scalding
- Legionella

Reducing the risk of scalding

- Scalding cannot be controlled by simply reducing water temperature
- Legionella bacteria will also need to be assessed as part of a Hot Water Risk Assessment
- This assessment may require the duty holder to maintain their systems at a temperature that represents a scald risk
- This is the traditional control strategy for Legionella - using heat to kill it.

Getting the assessment right

- All outlets delivering hot water should be assessed
- Particular attention should be paid to full immersion outlets (baths & showers)
- Where there are individuals how are elderly, very young, mentally or physically disabled, high risk outlets must be quickly identified and assessed.
- A site survey should be carried out to cover all outlets onsite and this should be kept up to date considering evolving site usage.

Legionella Control

For Legionella control, hot water outlet temperatures are required to be 50°C within one minute of operation (55°C in healthcare buildings), however, temperatures above 41°C can result in scalding injuries.

The role of the TMV

TMVs (thermostatic mixing valves) should be considered at all outlets where there is deemed to be a significant risk of scalding.

These allow the outlet temperature to be adjusted to within a more comfortable range to prevent the risk of scalding and injury.

TMV Valves

There are three common types of TMVs available;

- Type 1 a mechanical mixing valve with or without temperature stop (i.e., manually blended);
- Type 2 a thermostatic mixing valve: BS EN 1111 and or BS EN 1287;
- Type 3 a thermostatic mixing valve with enhanced performance: <u>HTM 04-01</u>: Supplement, D08. These are high-performance mixing valves that are designed to operate and protect users from scalding under both high and low water pressure, temperature instability and thermal shutdown

Additional Measures

- Adequate supervision of those who are vulnerable around hot water
- Ensuring rooms with water access are locked around vulnerable people and children.
- Using warning and hot water stickers and notices on outlets that are not used for hand washing
- Using temperature restricted, instant water heaters.

Need support?

We're here to help! Get in touch for a free consultation

www.safety-smart.co.uk